

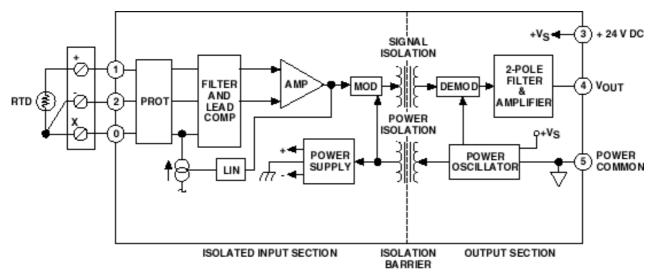
- IOS Catalog Home
- IOS Product Index

7B34 Isolated, Linearized RTD Input

- Functional Description
- Input and Output Ranges
- Available Models
- Specifications

- 7B Series Overview
- Modules
- Backplanes and Mounting Cards
- Accessories
- Ordering Guide

Functional Description


The 7B34 is a single-channel signal conditioning module that interfaces, amplifies and filters input voltages from a wide variety of two- and three-wire platinum, copper and nickel Resistor Temperature Detectors (RTDs) and provides a protected precision output of either +1 V to +5 V or 0 V to +10 V, linear with RTD temperature. Three-wire lead resistance compensation is provided and 2- or 3- wire RTDs may be used. RTD excitation current, and a predictable upscale open circuit indication provide a complete signal conditioning solution. Model 7B34 features a nonlinearity of ±0.05% maximum (Pt RTDs). To accurately measure low level signals in electrically noisy environments, 1500 V rms of galvanic transformer-based isolation with a common mode rejection (CMR) of 160 dB @ 50/60 Hz and a normal model rejection (NMR) of 60

dB @ 50/60 Hz are provided. Rated to operate with a nominal +24 V DC supply, Model 7B34 is mix-and-match and hot-swappable with other 7B Series input modules, so it can be inserted or removed from any socket in the same <u>backplane</u> without disturbing system power.

Inside the 7B34 Series Module

The three input pins of Model 7B34 are fully protected up to 120 V rms line voltage. A 250 μ A excitation current is provided to create an input voltage to the 7B34. This current also provides the upscale open circuit indication. A one-pole 3 Hz filter preconditions the RTD signal prior to amplification, provided by a low drift input amplifier. Amplitude modulation is used to implement transformer isolation (1500 V rms input-to-output and power). Isolated front-end circuitry power is supplied by a DC/DC converter. The output section contains a two-pole low pass filter (-3 dB @ 3Hz), a buffer amplifier and a power oscillator. The two-pole output filter and subsequent buffer ensures that a low noise, low impedance (<1 Ω) signal is available at the output to drive loads to 2 k Ω minimum.

120 Ω Nickel, 2-, 3wire, $\alpha = 0.00672$

Figure 1. 7B34 Functional Block Diagram

Input Types

- 100 Ω Platinum RTDs
- 120 Ω Nickel RTDs
- 50 Ω Copper RTDs

Output Options

- \bullet +1 V to +5 V
- 0 V to +10 V

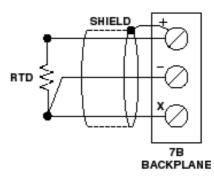


Figure 2. 7B34 Input Field Connections

7B34 Models Available

Model	RTD Sensor (2- or 3-wire)	Input Range	Output Range	Nonlinearity (maximum)	Accuracy (maximum)
7B34-01-1	100 Ω Pt, $\alpha = 0.00385$	-100°C to +100°C	+1 V to +5 V	±0.05% span	±0.15% span
7B34-01-2	100 Ω Pt, $\alpha = 0.00385$	-100°C to +100°C	0 V to +10 V	±0.05% span	±0.15% span
7B34-02-1	100 Ω Pt, $\alpha = 0.00385$	0°C to +100°C	+1 V to +5 V	±0.05% span	±0.2% span
7B34-02-2	100 Ω Pt, $\alpha = 0.00385$	0°C to +100°C	0 V to +10 V	±0.05% span	±0.2% span
7B34-03-1	100 Ω Pt, $\alpha = 0.00385$	0°C to +200°C	+1 V to +5 V	±0.05% span	±0.15% span
7B34-03-2	100 Ω Pt, $\alpha = 0.00385$	0°C to +200°C	0 V to +10 V	±0.05% span	±0.15% span
7B34-04-1	100 Ω Pt, $\alpha = 0.00385$	0°C to +600°C	+1 V to +5 V	±0.05% span	±0.1% span
7B34-04-2	100 Ω Pt, $\alpha = 0.00385$	0°C to +600°C	0 V to +10 V	±0.05% span	±0.1% span
7B34-N-01-1	120 Ω Ni, $\alpha = 0.00672$	0°C to +300°C	+1 V to +5 V	±0.12% span	±0.3% span
7B34-N-01-2	120 Ω Ni, $\alpha = 0.00672$	0°C to +300°C	0 V to +10 V	±0.12% span	±0.3% span
7B34-N-02-1	120 Ω Ni, $\alpha = 0.00672$	0°C to +200°C	+1 V to +5 V	±0.14% span	±0.3% span
7B34-N-02-2	120 Ω Ni, $\alpha = 0.00672$	0°C to +200°C	0 V to +10 V	±0.14% span	±0.3% span
7B34-C50-01-1	50 Ω Cu, α = 0.00214	-100°C to +100°C	+1 V to +5 V	±0.10% span	±0.15% span

7B34-C50-02-1 50 Ω Cu, $\alpha = 0.00214$	0°C to +100°C	+1 V to +5 V	$\pm 0.02\%$ span $\pm 0.02\%$).15% span
7B34-C50-06-1 50 Ω Cu, $\alpha = 0.00214$	-50°C to +200°C	+1 V to +5 V	$\pm 0.08\%$ span $\pm 0.08\%$	0.15% span

7B34 Specifications

(typical @ $+23^{\circ}$ C $\pm 5^{\circ}$ C and $V_s = +24 \text{ V dc}$)

Description	Model 7B34	
Input Range ¹		
RTD Types	100 Ω Platinum, 2-, 3-wire $\alpha = 0.00385$	

Standard Temperature Ranges

Custom Ranges

Output Range Options (RL > 2 k Ω)

Accuracy¹

Initial @ +25°C

Nonlinearity²

Input Offset vs. Temperature Zero Suppression vs. Temperature

Span vs. Temperature
Output Offset vs. Temperature

Lead Resistance Effect

Output Noise

5 MHz Bandwidth 10 Hz to 100 kHz Bandwidth 0.1 Hz to 10 Hz Bandwidth

Bandwidth, -3 dB

Output Rise Time, 10% to 90% Span

Common-Mode Voltage (CMV)

Input-to-Output and Power

Common Mode Rejection (CMR)

Input-to-Output and Power @ 50/60 Hz
Normal Mode Rejection @ 50/60 Hz

Input Protection

Refer to Model Table Not Available*

+1 V to +5 V or 0 V to +10

Refer to Model Table Refer to

Model Table $\pm 1 \ \mu V/^{\circ}C$

 $\pm 0.002\%$ $(R_z/R_{span})3/^{\circ}C$

±60 ppm/°C ±0.002%

Span/°C

 ± 0.02 °C/ Ω

10 mV peak 0.4 mV rms

0.6 μV peak 3 Hz

1500 V rms,

continuous

250 ms

160 dB 60 dB

120 V rms, continuous ±35 V dc, continuous

Input Transient Protection	ANSI/IEEE C376.90.1- 1989 IEEE-STD 472
	IEC 255-4, Class II
Output Resistance Voltage Output Protection	$< 1 \Omega$ Continuous Short to Ground
Power Supply	
Voltage Range, Operating	+14 V dc to +35 V dc
Current	+25 mA, maximum
Sensitivity	±0.0001%/% of Vs
Mechanical Dimensions	1.663" x 2.11" x 0.563" (42.24 mm x 53.6 mm x 14.3 mm)
Weight	60 grams
Environmental Temperature Range	
Operating	-40°C to +85°C
Storage	-40°C to +85°C
Relative Humidity, 24 hours	0 to 90% @ +60°C noncondensing
ESD Sensitivity	IEC 801-2, Level 2
RFI Susceptibility	±0.5% Span error @ 400 MHz, 5 Watt, 3 ft

Warm-up time required to meet specifications is approximately 10 minutes.

Specifications subject to change without notice.

Copyright 1995-1998 Analog Devices, Inc. All rights reserved.

^{*} Contact factory for OEM requirements.

¹Includes the combined effects of repeatability, hysteresis, and nonlinearity.

²Nonlinearity is calculated using best-fit straight line method.

 $^{^{3}}$ Rz is the value of the RTD resistance at the lowest measurement point. R_{span} is the change in resistance over the measurement span.